Subteam replacement is defined as finding the optimal candidate set of people who can best function as an unavailable subset of members (i.e., subteam) for certain reasons (e.g., conflicts of interests, employee churn), given a team of people embedded in a social network working on the same task. Prior investigations on this problem incorporate graph kernel as the optimal criteria for measuring the similarity between the new optimized team and the original team. However, the increasingly abundant social networks reveal fundamental limitations of existing methods, including (1) the graph kernel-based approaches are powerless to capture the key intrinsic correlations among node features, (2) they generally search over the entire network for every member to be replaced, making it extremely inefficient as the network grows, and (3) the requirement of equal-sized replacement for the unavailable subteam can be inapplicable due to limited hiring budget. In this work, we address the limitations in the state-of-the-art for subteam replacement by (1) proposing GENIUS, a novel clustering-based graph neural network (GNN) framework that can capture team network knowledge for flexible subteam replacement, and (2) equipping the proposed GENIUS with self-supervised positive team contrasting training scheme to improve the team-level representation learning and unsupervised node clusters to prune candidates for fast computation. Through extensive empirical evaluations, we demonstrate the efficacy of the proposed method (1) effectiveness: being able to select better candidate members that significantly increase the similarity between the optimized and original teams, and (2) efficiency: achieving more than 600 times speed-up in average running time.
translated by 谷歌翻译
时间序列数据出现在各种应用程序中,例如智能运输和环境监测。时间序列分析的基本问题之一是时间序列预测。尽管最近的深度时间序列预测方法取得了成功,但它们仍需要足够的历史价值观察才能进行准确的预测。换句话说,输出长度(或预测范围)与输入和输出长度之和的比率应足够低(例如,0.3)。随着比率的增加(例如,到0.8),预测准确性的不确定性显着增加。在本文中,我们从理论和经验上都表明,通过将相关时间序列检索作为参考文献可以有效地降低不确定性。在理论分析中,我们首先量化不确定性,并显示其与平方误差(MSE)的连接。然后,我们证明,带有参考的模型比没有参考的模型更容易学习,因为检索到的参考可能会降低不确定性。为了凭经验证明基于检索的时间序列预测模型的有效性,我们引入了一种简单而有效的两阶段方法,称为“保留”,该方法由关系检索和内容合成组成。我们还表明,可以轻松地适应时空时间序列和时间序列插补设置。最后,我们评估了现实世界数据集上的延迟,以证明其有效性。
translated by 谷歌翻译
对比度学习是图表学习中的有效无监督方法,对比度学习的关键组成部分在于构建正和负样本。以前的方法通常利用图中节点的接近度作为原理。最近,基于数据增强的对比度学习方法已进步以显示视觉域中的强大力量,一些作品将此方法从图像扩展到图形。但是,与图像上的数据扩展不同,图上的数据扩展远不那么直观,而且很难提供高质量的对比样品,这为改进留出了很大的空间。在这项工作中,通过引入一个对抗性图视图以进行数据增强,我们提出了一种简单但有效的方法,对抗图对比度学习(ARIEL),以在合理的约束中提取信息性的对比样本。我们开发了一种称为稳定训练的信息正则化的新技术,并使用子图抽样以进行可伸缩。我们通过将每个图形实例视为超级节点,从节点级对比度学习到图级。 Ariel始终优于在现实世界数据集上的节点级别和图形级分类任务的当前图对比度学习方法。我们进一步证明,面对对抗性攻击,Ariel更加强大。
translated by 谷歌翻译
由国土安全企业与安全相关的应用程序直接激励,我们着重于对图形数据的隐私保护分析,该分析提供了代表丰富属性和关系的关键能力。特别是,我们讨论了两个方向,即保护隐私图和联合图形学习,这可以共同使每个拥有私人图形数据的多个政党之间的协作。对于每个方向,我们都确定“快速获胜”和“硬问题”。最后,我们演示了一个可以促进模型解释,解释和可视化的用户界面。我们认为,在这些方向上开发的技术将大大提高国土安全企业的能力,以应对和减轻各种安全风险。
translated by 谷歌翻译
尽管Sylvester方程在各种图形挖掘应用程序(例如半监督标签学习和网络对齐)上取得了成功,但仍存在一些限制。Sylvester方程无法建模非线性关系以及对不同任务进行调整的僵化性限制了其绩效。在本文中,我们提出了一个端到端的神经框架Symgnn,该框架由多网络神经聚合模块和先前的多网络协会结合学习模块组成。提出的框架继承了Sylvester方程的关键思想,同时将其推广以克服上述局限性。对现实世界数据集的经验评估表明,Symgnn总体的实例超过了几何矩阵完成任务中的基准,其低级别的实例化可以将记忆消耗降低16.98%\%。
translated by 谷歌翻译
虚假信息是指故意传播的虚假信息以影响公众,而虚假信息对社会的负面影响可以在许多问题(例如政治议程和操纵金融市场)中观察到。在本文中,我们确定了从多个方面的自动虚假信息检测相关的普遍挑战和进步,并提出了一个称为迪斯科的全面和可解释的虚假发现检测框架。它利用了虚假信息的异质性,并解决了预测的不透明性。然后,我们以令人满意的检测准确性和解释为现实世界中的假新闻检测任务提供了迪斯科舞厅的演示。迪斯科的演示视频和源代码现已公开可用。我们希望我们的演示可以为解决整体的识别,理解和解释性的局限性铺平道路。
translated by 谷歌翻译
图形神经网络是一种强大的深度学习工具,用于建模图形结构化数据,在众多图形学习任务上表现出了出色的性能。为了解决深图学习中的数据噪声和数据稀缺性问题,最近有关图形数据的研究已加剧。但是,常规数据增强方法几乎无法处理具有多模式性的非欧几里得空间中定义的图形结构化数据。在这项调查中,我们正式提出了图数据扩展的问题,并进一步审查了代表性技术及其在不同深度学习问题中的应用。具体而言,我们首先提出了图形数据扩展技术的分类法,然后通过根据增强信息方式对相关工作进行分类,从而提供结构化的审查。此外,我们总结了以数据为中心的深图学习中两个代表性问题中图数据扩展的应用:(1)可靠的图形学习,重点是增强输入图的实用性以及通过图数据增强的模型容量; (2)低资源图学习,其针对通过图数据扩大标记的训练数据量表的目标。对于每个问题,我们还提供层次结构问题分类法,并审查与图数据增强相关的现有文献。最后,我们指出了有希望的研究方向和未来研究的挑战。
translated by 谷歌翻译
对比度学习是图表学习中有效的无监督方法。最近,基于数据增强的对比度学习方法已从图像扩展到图形。但是,大多数先前的作品都直接根据为图像设计的模型进行了调整。与图像上的数据增强不同,图表上的数据扩展远不那么直观,而且很难提供高质量的对比样本,这是对比度学习模型的性能的关键。这为改进现有图形对比学习框架留出了很多空间。在这项工作中,通过引入对抗图视图和信息正常化程序,我们提出了一种简单但有效的方法,即对逆向对比度学习(ARIEL),以在合理的约束中提取信息性的对比样本。它始终优于各种现实世界数据集的节点分类任务中当前的图形对比度学习方法,并进一步提高了图对比度学习的鲁棒性。
translated by 谷歌翻译
图是对物体之间关系的强大表示,吸引了很多关注。图形学习的一个基本挑战是如何在没有标签的情况下训练有效的图形神经网络(GNN)编码器,这些标签既昂贵又耗时。对比学习(CL)是应对这一挑战的最受欢迎的范式之一,该挑战通过区分正和负节点对来训练GNN。尽管最近的CL方法取得了成功,但仍然存在两个爆炸案。首先,如何减少基于随机拓扑的数据增强引入的语义错误。传统CL通过节点级拓扑接近定义正和负节点对,该节点拓扑接近度仅基于图形拓扑,而不论节点属性的语义信息如何,因此某些语义上相似的节点可能被错误地视为负对。其次,如何有效地对现实图形的多重性进行建模,其中节点通过各种关系连接,并且每个关系都可以形成均匀的图层。为了解决这些问题,我们提出了一种新型的多重异质图原型对比度倾斜(X-GAL)框架来提取节点嵌入。 X-GOAL由两个组成部分组成:目标框架,该目标框架学习每个均匀图层的节点嵌入,以及一个对齐正则化,通过对齐层特定的节点嵌入来共同对不同的层进行模拟不同的层。具体而言,目标框架通过简洁的图形转换技术捕获节点级信息,并通过将节点拉到嵌入空间中的同一语义簇中,从而捕获群集级信息。对齐正则化在节点和群集级别的层上对齐嵌入。我们在各种现实世界数据集和下游任务上评估X-GAL,以证明其有效性。
translated by 谷歌翻译
Algorithmic fairness is becoming increasingly important in data mining and machine learning. Among others, a foundational notation is group fairness. The vast majority of the existing works on group fairness, with a few exceptions, primarily focus on debiasing with respect to a single sensitive attribute, despite the fact that the co-existence of multiple sensitive attributes (e.g., gender, race, marital status, etc.) in the real-world is commonplace. As such, methods that can ensure a fair learning outcome with respect to all sensitive attributes of concern simultaneously need to be developed. In this paper, we study the problem of information-theoretic intersectional fairness (InfoFair), where statistical parity, a representative group fairness measure, is guaranteed among demographic groups formed by multiple sensitive attributes of interest. We formulate it as a mutual information minimization problem and propose a generic end-to-end algorithmic framework to solve it. The key idea is to leverage a variational representation of mutual information, which considers the variational distribution between learning outcomes and sensitive attributes, as well as the density ratio between the variational and the original distributions. Our proposed framework is generalizable to many different settings, including other statistical notions of fairness, and could handle any type of learning task equipped with a gradient-based optimizer. Empirical evaluations in the fair classification task on three real-world datasets demonstrate that our proposed framework can effectively debias the classification results with minimal impact to the classification accuracy.
translated by 谷歌翻译